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Abstract. Principled “separation of concerns” traditionally advocates
to orchestrate cyber-physical system (CPS) design under the three dis-
tinct concerns of its cybernetic (time), physics (evolution) and system
(control program). That way, a CPS is safe once its program is checked
functionally deterministic, its timing schedulable, and its physics control-
lable. And yet, time and physics are the root side effects that could cause
the whole CPS not to be (deterministic). We hence advocate to lift the
domain of such control program to allow for the representation of such
effects. Our goal is to design fully verified (safety-critical) programs, and
not just programs that are deterministic assuming a correct scheduler
and a correct physical model. To this end, we investigate the use of a
comonad combined with a monad to formally represent trustable control
programs in the constructive proof assistant Coq, as a mean to support
the end-to-end verification of their intended behavior until embedded in
a CPS.

Keywords: comonad, monad, monitoring, CPS, Coq

1 Introduction

Most approaches to study cyber-physical systems are based on real arithmetic
and abstract the discrete and the approximate nature of program operations.
The benefit of using real arithmetics for reasoning about continuous systems is
well known, one of which is the decidability of the first order theory. However, in
practice, the application has access to only a subset of the model’s information:
the measures are approximated, the time of the measure may be controlled by
the scheduler, etc. In order to reason about runtime cyber-physical effects of a
program, a semantic model must capture the streaming nature of program actu-
ation and (approximate) sensor reading, and the effects of running the program
in its immediate (cybernetic) and neighbouring (physical) environment.

Recent research on semantics for reactive programs has led to notions of
computations worth exploring for capturing cyber-physical effects. The use of
monads for modeling effects [8] of programs at a semantic level enables powerful
static analysis (using theorem provers) on effectful runtime behaviors. The recent
exploration of comonads combined with a monad for dataflow programming [10]
showed powerful result to give a compositional semantics of effectful dataflow



programs. A categorical semantic for programs with cyber-physical would there-
fore mix both a comonad for the streaming of values, and a monad for the effect
of an execution. We motivate the need for such semantics with the following
example.

To ground our thoughts, consider a cyber-physical system consisting of a
controller C that monitors a variable x with two actions: read(x), to acquire a
value from sensor x, and a(n), to trigger actuator n. We assume that the profile
of values at sensor x is given by a piece-wise linear and right-continuous function
of time x(t).

t C P

0.5 vx := read(x) x(t) ∈ R

0.7 if x > c then a(x) else skip fi ẋ(t+) = −ẋ(t−)

Table 1. Interaction between discrete commands and continuous environment.

The C column shows two instructions, run in sequence, from a controller. The
column P contains the events that are observed on the plant controlled by C.
For instance, the instruction read(x) has an effect on P , namely, it extracts an
approximation of the value x(t), which is stored in vx. The second instruction in
C is a branching condition that, if x is greater than the value c, actuates P with
a(x) and therefore changes the internal dynamic of x (e.g., change the derivative
of x). Note that, for each instruction, the column t labels the occurrence with
a time value. We discuss two constraints inherent to the description in Table 1
that are essential for monitoring of cyber-physical systems:

– The exact (real) time duration between two actions is unpredictable. The
resulting interaction between the controller C and the physical plant P is
therefore inherently non-deterministic as the controller cannot accurately
control the time of its action. The semantics of a program C with effectful
actions such as read(x) and a(x) must take the side-effects of such non-
determinism into account.

– The semantics of x > c may depend on the current value vx, but also on
values previously read. As a result, the branching condition is ambiguous:
is the condition on the value of x sensitive to the time at which the value
is read? What happens if the precision in the condition is higher than the
precision used to store the value in the variable vx? Can we infer a larger
precision of x with additional readings?

Related Work In [10], the authors use a combination of monads and comonads
to give a semantics for Lustre, a dataflow language. In this semantics, monads
capture effects (clock, value at a time), and comonad captures dataflow (list of
past values).

The language Lola [1] has been introduced for monitoring stream based appli-
cations. In Lola, streams are synchronized via a global clock. In [2], the authors



extend Lola with real time capabilities, namely a variable-rate input stream that
labels input events with real time, and a sliding window primitive that aggregates
data over a time window.

Several formalisms exist to specify cyber-physical systems, such as Platzer
with its formal framework for analysis of cyber-physical systems [9], Naijun
Zhang with the formalisation of hybrid systems [7], and Edward Lee with an
actor-based implementation of hybrid systems [5]. Moreover, the quantum physi-
cist Nicolas Gisin also witnesses that using computational model for explaining
physics is a region rich of theoretical and practical questions, fertile for discov-
eries [3].

In [4], the authors propose a hybrid monad as a semantic from imperative
reactive programs, and especially give a semantics for (possibly diverging) iter-
ation. However, such semantics is not operational, and requires calculating total
execution time of a program.

Contributions We give a categorical semantics for a language for controllers
that exposes the cyber-physical effects within a comonad and a monad. This
new semantic approach for cyber-physical systems enables compositional spec-
ifications (discrete controller composed with a context), and provides a formal
ground for powerful certification methods in a proof assistant. Moreover, the
combination of a comonad and a monad in a semantics reflect runtime concerns,
and is therefore suitable for analysis of runtime behaviors.

Outline In Section 2, we introduce preliminaries about biKleisli categories.
In Section 3, we present an imperative language for cyber-physical controller,
whose semantics is a morphism in a biKleisli category. In Section 4, we describe
the implementation in Coq of a distributive law, required for the semantics to
be compositional.

2 Preliminaries on the BiKleisli Category

In this section, we assume that the reader is familiar
with basic categorical notions such as categories, func-
tors and natural transformations. A comonad on a cat-
egory C consists of an endofunctor W : C → C with two
natural transformations: the counit ε : W → 1C (where
1C is the identity functor on C) and the comultiplica-
tion δ : W → W 2 (where W 2 is the composite functor
W ◦W ). These are required to make the two diagrams on
the right (a.k.a., coherence conditions) commute (where
the symbol · denotes the horizontal composition of natu-
ral transformations). In computer science, comonads are
used to model context-dependent computations.

W
δ //

δ ��

W 2

ε·1W��
W 2

1W ·ε
// W

W
δ //

δ ��

W 2

δ·1W��
W 2

1W ·δ
// W 3

In this paper, we take C to be the category whose objects are Coq types and
morphisms are functions. We will consider the comonad that maps a type X into



the type of non-empty lists over X. Concretely, we will use those non-empty lists
to keep a current value in the head of the list and previous ones in the tail.

A monad is the dual of a comonad: roughly speaking, it has the same com-
ponents (and coherence conditions) except that the arrows are reversed and are
called the unit and the multiplication. It is used in computer science to model
effectful computations. We will consider two monads: the maybe monad that
maps a type X into the sum type 1 +X thus allowing to represent the failure
of a computation; and the state monad that maps a type X into the function
type S → (X × S) thus allowing to represent stateful computation (where S is
the type of the state).

Given a comonad (W, ε, δ) and a monad (M,η, µ), a distributive law of the
comonad over the monad consists of a natural transformation ξ : WM → MW
such that the following diagrams commute:

W
1W ·η
xx

η·1W
&&

WM
ξ

// MW

WM2

1W ·µ ��

ξ·1M // MWM
1M ·ξ // M2W

µ·1W��
WM

ξ
// MW

M

WM
ξ

//

ε·1M
88

MW

1M ·ε
ff W 2M

1W ·ξ // WMW
ξ·1W // MW 2

WM
ξ

//
δ·1M

OO

MW

1M ·δ
OO

Given a category C, a comonad W and a monad M on C, and a distributivity
law of W over M , one can define the biKleisli category CW,M whose objects are
those of C and sets of morphisms CW,M (X,Y ) are C(WX,MY ). In a context-
dependent and effectful language, a program that inputs a value of type X and
outputs a value of type Y is modeled as a function p : WX → MY . For example,
in [10], a distributive law of the non-empty list comonad over the maybe monad
was used to give a categorical semantics to a clocked dataflow language: the
non-empty list comonad allows to model the access to previous values of a flow,
and the maybe monad allows to model the absence or presence of a value in a
flow. In this paper we investigate the use of a distributive law of the non-empty
list comonad over a monad that capture the effect of the program, and show
how it can be used to deal with the monitoring of cyber-physical systems.

3 Monitoring of Cyber-Physical systems

The necessity for monitoring cyber-physical systems emerges from the streaming
nature of cyber-physical interaction: the effect of a controller cannot be antici-
pated as it depends on the (real) time of the action, and the (real) state of the
physics, which cannot be predicted by a discrete controller.

Each letter C, T , P , and A, in Table 2 corresponds to a (cyber-physical) pro-
cess that transforms an input stream to an output stream. We give the signature
for each process in Section 3.1 The table gives a symbolic example of what each



C T P A

(⌊x1⌋, ⌊t1⌋) read(x) (read(x), t1 ∈ R) (x1 ∈ R, t1) (⌊x1⌋, ⌊t1⌋)

(⌊x2⌋, ⌊t2⌋) read(x) (read(x), t2 ∈ R) (x2 ∈ R, t2) (⌊x2⌋, ⌊t2⌋)

⌊t3⌋ a(n) (a(n), t3 ∈ R) t3 ⌊t3⌋

· · · · · · · · · · · · · · ·

Table 2. Interaction between discrete commands and continuous environment.

process does, and how processes compose. For each process, the left part of the
line is its input stream, and the right part is its output. As expected, compo-
sition unifies the output of one process with the input of another process. For
instance, the controller C takes some approximate reading as inputs, and sends
commands to a timer T , that outputs the command labeled with a real time
value. The plan P receives the command with a real time, and interprets such
command by, for instance, valuating the sensor value x. Finally, the real value
are approximated by the process A to fit within the precision of the inputs of
the controller. Assuming that ≫ stands for the composition, the overall system
behavior is the set of streams x such that:

(A ≫ P ≫ T ≫ C) x = x

Properties on the robustness of a controller C can therefore be studied by
altering the specification of A or T and analyse invariant on the system be-
havior. The categorical framework introduced in Section 2 makes possible to
define functionally the streaming nature and the effect of individual process,
and gives conditions for having an operator of composition between processes
(as composition of morphisms in the biKleisli category).

3.1 Categorical semantics

In fact, processes from Table 2 are morphisms of the form WX → MY , where
W is the non-empty list comonad, and M is the monad that captures the effect
of the program.

Example 1 (Controller). The effects of a controller are captured by morphisms
of the form LV I → LV O), where LV I is the set of input sequences (i.e.,
sensor values), and LVO is the set of output sequences (i.e., sensor readings, and
actuations). A stateful and operational description of a controller is a morphism
between the non-empty list comonad LV and the state monad St O such that
LV I → St O. We give in Section 3.2 a language for which the semantics of each
instruction is a morphism of such form.

Example 2 (Environment). Environment E with actionable and sensing A are
evaluated as morphisms of the form LV A → St I with I the valuation of sensing
variables. In other words, an environment generates inputs I given actions and
a state S.



Composition of morphisms is defined as arrows in a biKleisli category, where
the distributive law threads the execution over the list of state monads.

Composition The definition of a composition beteeen P and its environment E
would be P ≫ E, and requires a distributive law between the non-empty list
comonad and the state monad. As explain in Section 4, this question is left as
future work.

3.2 Interpreter for CPS controller

In this subsection, we use the categorical framework to give a semantics for a
language with cyber-physical effects. We first introduce the term language and
its semantics, and then show how it composes with physical processes (Timer,
Plant, and Approximate).
Terms:

t := f(t1, ..., tn) | vs | x

with vs ∈ S a sensor variable, disjoint from state variables x ∈ V.
Guards:

b := t1 = t2 | b1 ∧ b2 | b1 ∨ b2 | ¬b | false | t1 < t2

Programs:

S := if b then S1 else S2 fi | S1;S2 | while b do S od |
a(n) | vs := read(s) | x := t | skip

with n ∈ A an actuator name.
Let Act be the set of actions. We fix check(b), skip, read(s), a(n) ∈ Act

for all guards b, sensors s, and actuators n. We fix I : S → DS to be the set of
valuations of sensor variables, and St : V → DSt to be the set of valuations of
state variables.

The state monad State A = St → (A × St) and the comonad LV A of
non-empty lists are respectively the co-domain and the domain of the process
morphisms. Hence, we give a semantics for a program S as a morphism JSK :
LV I → (State Act). We define J·K inductively on the structure of the program
S, for which we give some rules:

Jvs := read(s)K(l, q) = (read(s), q[vs] 7→ val(vs, l))

Ja(n)K(l, q) = (a(s), q)

Jx := tK(l, q) = (skip, q[x] 7→ val(t, l, q))

Jif b then S1 else S2 fiK(l, q) = JS1K(l, q) if val(b, l, q) = true

Jif b then S1 else S2 fiK(l, q) = JS2K(l, q) if val(b, l, q) = false

JS1;S2K(l, q) = JS2K(l, q′) with JS1K(l, q) = (o, q′)

Jwhile b do S odK(l, q) = Jif b then S;while b do S od else skip fiK(l, q)



where val is a context dependent valuation function. For instance, a context
dependent evaluation of x < c would use the past read values of x and an
inference mechanism to decide if, at the expected present time, x is lower than
c. The dataflow description of C in table 2 is given by relating input lists in
LV I to output actions in LV O from denotation JCK.

4 Implementation

The categorical semantics gives a functional yet effectful and context-dependent
description of programs with cyber-physical effects. Once the semantics is for-
malized in a proof assistant, it becomes possible to formally prove invariant on
reactive behaviors. For instance, the prove may ensure that the compiled bi-
nary, running on the targeted architecture, has safe cyber-physical effects. The
existence of toolchains using CompCert [6] demonstrates the feasibility of such
approach.

Distributive law with option monad A general implementation of monads and
comonads is in Coq 3, with the axioms that the distributive law must verify (as
detailed in Section 2). The distributive law is instantiated for the case of the
option monad Maybe and the non-empty list comonad LV. As a result, processes
of the form f: LV A → Maybe B and g: LV B → Maybe C compose to form a
process f >> g : LV A → Maybe C. The composition is intuitively collecting, in
order, all outputs from f for any prefix of the input list in LV A and filters absent
values from the list to return elements of LV B, or propagates the absence of
value if the resulting list is empty. There is one special case, however, that if the
head of the input list for f if the head of the list is an absent value, the output
list is therefore also absent.

The distributive law has the signature LV (Maybe A) → Maybe (LV A) and the
proof for the laws have been mechanically verified in Coq. The resulting biKleisli
category and morphism composition follows from the categorical framework, as
shown in 2.

5 Conclusions and future work

While the result of distributive law of the non-empty list comonad over the
option monad are encouraging, a reactive language for cyber-physical systems
has a stateful execution as shown in Section 3.2. The distributive law for this
case would enable composition of morphisms of the form f: LV A → State B

and g: LV B → State C to f >> g: LV A → State C. One way to do so is to
compute the list of state monads obtained from f with each prefix of the input
list, thread the state over the list, and collect the outputs in a list for g. Proving
that such composition satisfies the axioms of a distributive law (or something
similar) is left as future work.

3 The Coq code is reachable here.

https://benjaminlion.fr/DistInterpreter.zip
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